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A b s t r a c t

Rotenone ([2R-(2α,6aα,12aα)]-1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-[1]benzopyran[3,4-b]furo 
[2,3-h][1]benzopyran-6(6aH)-one) is a naturally occurring compound derived from the roots and stems of Derris, 
Tephrosia, Lonchocarpus and Mundulea plant species. Since its discovery at the end of the 19th century, rotenone 
has been widely used as a pesticide for controlling insects, ticks and lice, and as a piscicide for management of 
nuisance fish in lakes and reservoirs. In 2000, Betarbet et al. reproduced most of the behavioural, biochemical and 
pathological features of Parkinson’s disease (PD) in rotenone-treated rats. Since that time, rotenone has received 
much attention as it would be one of the environmental neurotoxins implicated in etiopathogenesis of PD. Moreover, 
it represents a common experimental model to investigate the underlying mechanisms leading to PD and evaluate 
the new potential therapies for the disease. In the current general review, we aimed to address recent advances in 
the hazards of the environmental applications of rotenone and discuss the updates on the rotenone model of PD and 
whether it is implicated in the etiopathogenesis of the disease. 
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Introduction

Rotenone, a  naturally occurring substance, is 
derived from the roots, seeds and stems of some 
tropical plants including Derris, Tephrosia, Loncho-
carpus and Mundulea species [26]. Rotenone was 
discovered hundreds of years ago in South America 
and Southeast Asia, and nowadays, it is an active 
ingredient of hundreds of pesticides and piscicides 
[31]. Most recently, rotenone has attained much 
attention since 2000 when Betarbet et al. reprodu- 
ced the major features of Parkinson’s disease (PD) in 
rotenone-infused rats [3]. 

In this review, we aimed to address currently 
reported hazards of rotenone applications in humans, 
animals and environment, and recent updates on 
the rotenone model of PD and to discuss its implica-
tion in etiopathogenesis of PD.

 
Historical background 

The use of rotenone goes back hundreds of years 
when Peruvian natives used crude extracts of rote-
none-containing plants e.g. cubè plant to catch fish 
for eating. In the early 1900s, botanists looking for 
useful plants of commercial values in Peruvian jun-
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gles exported large quantities of plant roots and 
extracts with the major active ingredient being rote-
none to the USA for use as insecticides on crops [31]. 
Rotenone was first isolated between the years 1895 
and 1902. While travelling in French Guiana, French 
botanist Emmanuel Geoffroy isolated an active che- 
mical compound that he called nicouline from the 
plant Lonchocarpus nicou. In 1902, Japanese chem-
ist Nagai Nagayoshi isolated a pure crystalline com-
pound from Derris elliptica and he called it rotenone. 
Nicouline and rotenone were recognized to be chem-
ically the same by 1930 [39]. Since 1932, rotenone 
has been used extensively in fisheries management 
as a piscicide in North America. Nowadays, rotenone 
is recognized as the most environmentally benign 
pesticide and piscicide worldwide [46].

 
Physical and chemical characters 

Rotenone is an odourless and colourless to brown- 
ish crystalline powder, which belongs to a  class of 
compounds of related molecular structure referred 
to as isoflavones. Its empirical formula is C23H22O6 
with a  molecular weight of 394.41 and a  melting 
point of 165-166°C. It is insoluble in water and on 
the other hand, it is very soluble in many organic sol-
vents. Rotenone is very sensitive to light and oxygen, 
decomposes to less toxic products, e.g. rotenolone. 
The rate of decomposition of rotenone is dependent 
upon several factors such as temperature, pH, sun-
light, depth, dose and presence of organic debris [16].

Toxicokinetics and metabolism 

Rotenone is absorbed in relatively different 
amounts through the gastrointestinal tract, lungs 
and skin. Low and incomplete absorption of rote-
none occurs in the gastrointestinal tract. Fats and 
oils enhance the absorption of rotenone from the 
intestines. Rotenone dust can find its way to the 
lungs through inhalation; experimental inhalation 
of rotenone dust in rats and dogs resulted in earlier 
clinical signs than following oral ingestion. Dermal 
absorption of rotenone is negligible. Application of 
a  single dose of 5 g/kg rotenone on rabbit’s skin 
resulted in no systemic toxicity or mortalities. Rote-
none is metabolized by NADP-linked hepatic micro-
somal enzymes in the liver. Unabsorbed rotenone is 
excreted by the faecal route and about 20% of the 
oral doses are excreted in the urine after 24 h. Sev-
eral metabolites of rotenone metabolism such as 

rotenolone, and hydroxyl- and dihydroxyrotenone 
are identified in the blood, urine, faeces and liver. 
These metabolites can serve as a biomarker of rote-
none exposure [20,24]. 

Current applications of rotenone 

Fisheries management and marine 
research 

Rotenone is still extensively used as a selective 
piscicide for fisheries management in the USA, Can-
ada and more than 30 countries worldwide. This 
includes controlling of undesirable fish, eradication 
of harmful and exotic fish, quantification of fish pop-
ulation, controlling of fish diseases, and restoration 
of threatened and endangered fish species [46]. 
Also, rotenone is considered a unique and efficient 
tool for sampling fishes for marine research [61]. In 
2007, the Environmental Protection Agency (EPA) 
allowed re-registration of all piscicidal uses of rote-
none as none of them posed any adverse effects on 
the humans and environment [76]. 

Controlling pests 

After its discovery in 1848 and for more than 
150 years, rotenone had been commonly used as 
a broad-spectrum insecticide for controlling a wide 
range of pests in numerous crops and home garden, 
and lice, ticks and mites in veterinary practices and 
animal husbandry. Currently, food uses of rotenone 
have been cancelled in the USA, Canada and the EU. 
However it continues to be used legally in many  
other countries [46].

Implication of rotenone use on humans, 
animals and environment 

Rotenone toxicity in humans 

The World Health Organization (WHO) classifies 
rotenone as a moderately hazardous agent (a class II 
pesticide). Rotenone poisoning in humans is uncom-
mon as: (1) the estimated oral LD50 of rotenone in 
humans is much higher (300-500 mg/kg b.w.) to 
expose to it and upon exposure, rotenone is effi-
ciently metabolized in the gut and so little or no 
rotenone goes to the blood stream [17]. Moreover, 
the most effective route of exposure, the intrave-
nous one, is difficult to happen and absorption of 
rotenone through lungs and skin is negligible [20]; 
(2) Quick decomposition of environmental rotenone 
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to less toxic products decreases the opportunities 
of human exposure to toxic rotenone [31]; (3) EPA 
has cancelled all food uses of rotenone since 2006 
and only allowed re-registration of its piscicidal uses 
with strict regulations [46]. Therefore, fatalities of 
rotenone in humans were only reported following 
accidental or intended poisoning. In this context, 
Holland [29] reported that natives in Papua Guin-
ea were seen to eat the roots of plants known to 
contain rotenone as a method of deliberate suicide. 
Three fatalities were reported following ingestion of 
commercially available rotenone-containing formu-
lations in a 3.5-year-old girl [9], a 47-year-old woman 
[78] and a 49-year-old Tamil man [12]. The three cas-
es showed a similar course of signs including vomit-
ing, irregular respiration, unconsciousness, hypoten-
sion and circulatory failure, and they eventually died 
after 5 h – 3 days [12]. Implication of rotenone in PD 
development will be discussed in a separate section.

 
Rotenone toxicity in animals 

Rotenone toxicity is moderate and widely var-
ies between and within animal species. The oral 
LD50 values of rotenone are approx. 1.5 mg/kg b.w., 
60-135 mg/kg b.w. and 350 mg/kg b.w. in rabbits, 
rats and mice, respectively. Systemic uptake of rote-
none results in higher toxicity than by the oral route. 
The estimated intravenous and intraperitoneal  
LD50 values in rabbits and mice are 0.35-0.65 mg/kg 
b.w. and 2.8 mg/kg b.w., respectively [20]. In gener-
al, common clinical signs of rotenone poisoning in 
animals include pharyngitis, gastric pain, vomiting, 
muscle tremors, chronic convulsions and respiratory 
stimulation followed by depression. It can also lead 
to severe signs of hypoglycaemia, liver failure, alter-
ations in arterial blood gases and acid base balance, 
and hypercapnia and hypoxemia due to seizures and 
respiratory depression. Death can result from car-
dio-respiratory failure [20]. Compared to mammalian 
species, rotenone is highly toxic to fish as it is rapidly 
absorbed from the gastrointestinal tract and directly 
uptaken through gills to the blood stream [20]. 

Effects of rotenone on the environment 

Because rotenone breaks down quickly by expo-
sure to light and temperature, its impact on the envi-
ronment is considered to be low. It has low mobility in 
soil and only travels less than one inch through most 

soils. It does not leach far into underlying sediment and 
therefore, it does not affect groundwater supplies [8].

Rotenone model of Parkinson’s disease 

In 1985, rotenone was first used by Heikkila et al. 
to model PD by stereotaxic administration of 5 mg 
of this mitochondrial complex I inhibitor into the rat 
brain [25]. Drawbacks of Heikkila’s study were the 
use of a higher dose of rotenone, i.e. approximately 
500,000-fold higher than the half maximal inhibito-
ry concentration (IC50) of 10 nM and the stereotaxic 
route of administration which is an impracticable 
route for rotenone exposure. Another trial of using 
rotenone to model PD was in 1997 when Ferrante  
et al. [13] administered 18 mg/kg/day intravenously 
to rats. In addition to the higher dose, the results 
were nonspecific brain lesions and peripheral toxicity 
[13]. In 2000, Betarbet et al. succeeded to reproduce 
the two pathological hallmarks of PD, i.e. the loss of 
dopaminergic neurons and the formation of Lewy-
like bodies in the surviving dopaminergic neurons, 
as well as some of the parkinsonian motor deficits 
by systemic administration of rotenone in rats [3]. 
Following Betarbet et al.’s study, the rotenone 
model has been widely used by many researchers 
to investigate both the mechanisms that underlie 
dopaminergic cell death and to test new potential 
symptomatic and neuroprotective therapies in PD 
[34,59]. This is due to: (1) its extreme lipophilicity 
that enables it to cross cellular membranes indepen-
dent of any transporter producing systemic inhibi-
tion of mitochondrial complex I  [19]; (2) its impli-
cation in many pathogenic pathways that mediate 
dopaminergic cell death including oxidative stress, 
α-synuclein phosphorylation and aggregation, and 
Lewy pathology, DJ-1 acidification and translocation, 
proteasomal dysfunction and nigral iron accumula-
tion [4]; (3) its capability of reproducing some of the 
non-motor symptoms of PD, most notably disrup-
tion of gastrointestinal and olfactory discrimination 
[34]; (4) its usefulness in assessing some end-points 
such as α-synuclein accumulation, ubiquitin-prote-
asome function and GIT dysfunction in addition to 
preservation of dopaminergic neurons and related 
motor functions which are the most commonly used 
endpoints in neuroprotective studies [7]. Beside the 
intravenous route of rotenone administration used 
in Betarbet’s study, researchers also adopted oral, 
subcutaneous and intraperitoneal routes to deliver 
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rotenone in different animal models of PD. Intra-
peritoneal rotenone administration was reported to 
produce highly reproducible PD-like lesions including 
L-dopa-responsive locomotor deficits and loss of 
dopaminergic neurons in substantia nigra associat-
ed with α-synuclein pathology. These features make 
it a well-suited model for the assessment of patho-
genic pathways and experimental therapeutic inter-
vention [7]. The subcutaneous route of rotenone 
administration has recently attracted some atten-
tion as it is more convenient, simple and efficacious 
in reproducing features of PD in animal models [81]. 
Use of the oral route is primarily intending to test 
the effect of rotenone on gastric motility and enteric 
the nervous system as its absorption from the gas-
trointestinal tract is low and incomplete to produce 
systemic mitochondrial inhibition [72]. Rotenone 
was also used to study PD in some in vitro cellular 
models such as primary mesencephalic cell culture, 
neuroblastoma cell line (SH-SY5Y) and pheochromo-
cytoma cells (PC12). Apart of motor clinical signs, 
these rotenone in vitro models of PD presented most 
of the cellular and molecular pathology that occurs 
in PD patients, most notably dopaminergic cell loss 
(Fig. 1) [55] and formation of protein aggregates 
containing α-synuclein [80]. Unlike MPP+ which spe-
cifically damages dopaminergic neurons, rotenone 
was shown to injure other neuronal populations in 
primary mesencephalic cell culture. Similar results 
were obtained by our laboratory for some other neu-
rotoxins like domoic acid [56] and acrylamide [57]. 

Mechanisms of action of rotenone 

Complex I inhibition and production 
of reactive oxygen species 

Mitochondria generate ATP via oxidative phos-
phorylation complexes that are present in their 
inner membranes. These complexes are known as 
NADH-ubiquinone oxidoreductase (complex I), suc-
cinate dehydrogenase (complex II), ubiquinol-cyto-
chrome c oxidoreductase (complex III), cytochrome c 
oxidase (complex IV) and ATP synthase (complex V). 
The process of oxidative phosphorylation is initiated 
by oxidation of NADH by the complex I enzyme. This 
results in transferring two electrons, which reduces 
ubiquinone to ubiquinol. Ubiquinol is re-oxidized by 
the complex III enzyme and transfers electrons to 
reduce molecular oxygen to water at complex IV. As 
a result, the redox energy released during this pro-

cess is used to transfer protons from the mitochon-
drial matrix to the periplasmic space that generates 
proton-motive force across the inner mitochondrial 
membrane at complex I, III, and IV. This proton-mo-
tive force is used by complex V to produce ATP from 
ADP and inorganic phosphate [64]. Therefore, com-
plex I  is the major entry point for electrons to the 
respiratory chain and the rate-limiting step in overall 
respiration. However it is still the most complex and 
least understood component of the mitochondrial 
oxidative phosphorylation system [63,77].

Inhibition of complex I is the strongest action of the 
pesticide rotenone [26]. This effect of rotenone dates 
back to the 1960s [73] when Palmer et al. [53] found 
that rotenone inhibited electron transfer from the 
iron-sulfur centres in complex I to ubiquinone leading 
to blockade of oxidative phosphorylation with limited 
synthesis of ATP in submitochondrial particles. Sing-
er and Ramsay [68] described two binding sites for 
rotenone that must be occupied to completely inhibit 
NADH oxidation: one is located in the corner between 
the two arms of the l-shaped protein complex [40] 
and the other is in the hydrophobic domains in the 
membrane bond arm of the protein which may be 
responsible for the formation of superoxide radicals. 
The sensitivity of complex I to rotenone was reported 
to be different in-between species and ages. In this 
context, Ueno et al. [75] found that the effect of rote-
none is not equal in all species and considerable dif-
ferences in various taxa are shown. Lenaz et al. [41] 
reported that mitochondria are not identical and their 
activity alters during aging. For instance, Genova et al. 
[15] observed a  decrease in complex I  sensitivity to 
rotenone in liver, heart and muscle mitochondria of 
24 more than 4-month-old rats. 

Rotenone inhibition of electrons transfer from 
the Fe-S centres in complex I to ubiquinone results 
in reducing oxidation of NADH and ATP formation 
[62]. In addition to decreasing ATP production, elec-
trons that leak at complex I can reduce oxygen that 
was not reduced at complex IV to reactive oxygen 
species (ROS) such as superoxide and hydrogen 
peroxide [67]. Elevation of ROS production by rote-
none was observed in some experimental models. 
For instance, Radad et al. [58] found that treatment 
of primary mesencephalic cell culture with 20 nM of 
rotenone significantly increased formation of super-
oxide radical (Fig. 1) and overall ROS (Fig. 1) as mea-
sured by dihydroethidium and C-DCDHF-DA fluores-
cent dyes, respectively. Li et al. [43] reported that 
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rotenone was able to increase ROS production both 
in isolated mitochondria from HL-60 cells and the 
cultured HL-60 cells themselves. Besides production 
of ROS, rotenone was reported to decrease the activ-
ities of antioxidant enzymes. In this context, Ojha 
et al. [52] reported that rotenone administration to 
rats significantly reduced the activity of superoxide 
dismutase (SOD) and catalase (CAT), and depleted 

glutathione (GSH) concentrations. Elevation of ROS 
production and reducing activity of antioxidant 
enzymes lead to oxidative stress, the process that 
mediates most of the rotenone-induced insults.

 
Inflammatory mechanisms 

Inflammation was reported as one of important 
underlying mechanisms that mediate rotenone-induced 
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Fig. 1. Treatment of primary mesencephalic cell cultures with rotenone on 10th DIV for 48 h results in loss of 
dopaminergic neurites (TH immunostaining), increases formation of superoxide radicals (DHE fluorescent 
dye) and rises overall ROS (CDCDHF-DA fluorescent dye) compared to untreated control cultures.
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damage to neuronal cells. In this context, it was 
shown that rotenone increased the release of pro- 
inflammatory cytokines such as interleukin-1β (IL-1β), 
IL-6 and tumor necrosis factor α (TNF-α) in the BV2 
cells [44] and in rat’s brain tissues [33,52,65,74]. 
Microglial activation was reported to play a  cen-
tral pillar in rotenone-induced neuroinflammation. 
Zaitone et al. [79] found that rotenone upregulates 
genes encoding CD11bc, a  microglial surface anti-
gen, in mice brain. Activated microglia was shown 
to release cytotoxic inflammatory cytokines such as 
IL-1β and TNF-α [14]. TNF-α activates intracellular 
death signalling pathways such as nuclear factor κB 
(NF-κB), c-Jun N-terminal kinase (JNK) and p38 path-
ways, and increases cyclooxygenase-2 (COX-2) and 
inducible nitric oxide synthase (iNOS) expressions 
which further amplify inflammatory cascades [28]. 
Activated microglia was also seen to lead to neu-
ronal damage through phagocytic activities without 
increasing pro-inflammatory cytokines in primary neu-
ronal/glial cultures prepared from rat cerebella [11]. 
Prevention of such rotenone-induced neuronal loss 
by inhibition of microglial phagocytic activities indi-
cates that rotenone neurotoxicity is at least par-
tially mediated by microglial phagocytosis [11]. On 
the other hand, Klintworth et al. [38] showed that 
rotenone did not act directly on microglia in cultures 
prepared from C57BL/6 mice and rotenone-induced 
microglial activation may occur as a result of neuro-
nal damage or due to releasing of some factors by 
other neurons or cells. 

Microtubules depolarizing effects 

Rotenone was shown to depolarize microtubules 
in some in vitro studies. For instance, Passmore et al. 
[54] showed that treatment of COS-7 cells with 
higher rotenone concentrations resulted in a  com-
plete depolarization of microtubules. Bisbal et al. [5] 
reported that rotenone decreased microtubule stabil-
ity in cultured hippocampal neurons. This depolariz-
ing effect of rotenone on microtubules was suggest-
ed to be attributed to binding to tubulin, the protein 
that polymerizes to microtubules [70]. Protection of 
microtubules against rotenone-induced depolariza-
tion by the microtubule-stabilizing drug taxol con-
firmed the depolarizing effect of rotenone on micro-
tubules [54,60]. As a microtubule-depolarizing agent, 
rotenone can result in (1) arresting mitosis and inhi-
bition of cell proliferation [70], (2) inhibition of axon 

growth by releasing Lfc, a specific GEF for RhoA, from 
depolarized microtubules [5] and (3) disruption of 
vesicular transport of dopamine along microtubules 
leading to accumulation of dopamine in the dopami-
nergic soma. This can result in increasing oxidative 
stress due to oxidation of cytosolic dopamine [60]. 
Moreover, induction of microtubule depolarization in 
COS-7 cells by rotenone was shown to alter peroxi-
some morphology and distribution, and on the other 
hand, treatment of COS-7 cells with rotenone after 
stabilization of microtubules by paclitaxel resulted 
in no effects on peroxisome. Peroxisomes are closely 
linked to the mitochondria and they both maintain 
a redox-sensitive relationship [54].

 
Autophagy inhibition 

Autophagy is a  highly regulated intracellular 
catabolic process that mediates the degradation of 
unnecessary materials and dysfunctional organelles 
in eukaryotic cells [21]. The process of autophagy is 
essential in maintaining cellular haemostasis and 
protection against various physiological and patho-
logical stresses, and on the other hand, can lead to 
some pathological processes [49]. Rotenone was 
reported to inhibit the autophagy system both in  
in vitro and in vivo experimental models [32,36]. The 
raised question now is whether rotenone inhibits 
autophagy process by decreasing autophagy initi-
ation or autophagy-lysosomal pathway (ALP). The 
answer to this question is still controversial. Sup-
pression of Beclin 1 expression which acts during 
initiation of autophagosome formation in rote-
none-treated SH-SY5Y neuroblastoma cells indicates 
that rotenone inhibits autophagy process earlier at 
the initiation step [32,36]. On the other hand, accu-
mulation of autophagic vacuoles as indicated by 
increasing the expression of microtubule associated 
protein-light chain 3-II (LC3-II) in rotenone-treated 
SH-SY5Y neuroblastoma cells and C57BL/6 mice [82] 
indicates that rotenone either stimulated auto-
phagic vacuoles formation or decreasing ALP. LC3-II 
is an accepted and selective marker of autophagic 
vacuoles. Mader et al. [49] showed that autophagic 
accumulation by rotenone in SH-SY5Y neuroblasto-
ma cells resulted not from autophagy induction but 
rather from a block in the lysosomal degradation of 
autophagic vacuoles. This is because treatment of 
SH-SY5Y neuroblastoma cells with bafilomycin A1 
prior to rotenone resulted in no increase in levels 
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of LC3-II. Bafilomycin A1 is a  selective inhibitor of 
vacuolar-type V-ATPase that completely blocks deg-
radation of autophagic vacuoles through inhibition 
of autophagic vacuole-lysosome fusion [49].

Rotenone-induced cell death 
Apoptotic cell death 

The pesticide rotenone was shown to induce 
apoptotic cell death in some cellular and animal 
experimental models. For example, Ahmadi et al. 
[2] reported that exposure of primary dopaminergic 
neuronal cell culture to rotenone resulted in increas-
ing the number of apoptotic tyrosine hydroxylase 
positive neurons (TH+) and that was correlated 
with upregulation of caspase-3 immunoreactivity. 
Lin et al. [45] showed that chronic rotenone intox-
ication resulted in apoptotic cell death in rat’s stri-
atum. Using neuroblastoma SH-SY5Y cells, it was 
shown that rotenone induced apoptotic cell death 
through activation of caspases [37,48], and p38 and 
JNK pathways [50], and upregulation of Bax and 
downregulation of Bcl-2 [10]. In PC12 cells, Hirata 
et al. [27] showed that rotenone induced apoptosis 
through activation of JNK and p38 mitogen-activat-
ed protein kinase (MAPK). Increasing mitochondrial 
ROS is implicated in rotenone-induced apoptotic cell 
death [43]. In this context, the authors showed that 
rotenone-induced apoptosis was inhibited by antiox-
idants such as GSH, N-acetylcysteine and vitamin C 
[43]. Moreover, they observed that HT1080 cells 
overexpressing magnesium superoxide dismutase 
were more resistant to rotenone-induced apoptosis 
than untreated control cells [43]. 

Necrotic cell death 

Not only apoptosis, rotenone was also reported to 
induce necrotic cell death. In this context, Kamalden 
et al. [35] found that rotenone induced degeneration 
of RGC-5 cells by activation of mitogen-activated 
kinase and not caspase-dependent apoptosis. Hong 
et al. [30] found that rotenone induced necrotic cell 
death in PC12 cells. Recently, Callizot et al. [6] have 
shown that rotenone treatment resulted in necrotic 
cell death of primary rat dopaminergic neurons at 
higher concentrations. According to Skulachev [69], 
rotenone seems to induce necrotic cell death through 
ATP depletion. Generally, rotenone was reported to 
cause apoptosis at low concentrations and necrosis 
at high concentrations [22]. 

Necroptotic cell death 

In addition to apoptotic and necrotic cell death, 
rotenone was reported to lead to necroptosis in pri-
mary rat dopaminergic neurons as measured by the 
upregulation of RIPK3 after 24 h of exposure [6]. 
Upregulation of RIPK3 is an indicator of necroptotic 
cell death [47]. 

Implication of rotenone in Parkinson 
disease 

For a long time, it has been known that there is an 
increased risk of PD among people who live in rural 
areas compared to those who live in cities and this 
would be attributed to some kind of environmental fac-
tors including pesticides [66]. In 2000, successful repro-
duction of most behavioural, biochemical and patho-
logical features of PD in systemically rotenone-treated 
rats by Betarbet et al. raised significant concerns about 
rotenone contribution to PD [3]. Following Betarbet 
et al.’s study, researchers showed that rotenone can 
produce a  number of pathological processes such as 
inflammation [46], apoptotic cell death [2], autophag-
ic impairment [32] and microtubule depolarization [54] 
in rodents similar to those occurring in parkinsonian 
human brains. Besides CNS pathology, rotenone was 
also found to cause progressive functional and patho-
logical changes in the enteric nervous system of rodents 
mimicking changes found in human PD [18]. All togeth-
er strengthen the association relationship between the 
pesticide rotenone and PD, and support Greenamyre’s 
belief that rotenone can produce PD in humans as it 
did in experimental animals [1]. Supporting animal 
experiments, some epidemiological studies have linked 
exposure to pesticides with an increased risk of PD in 
humans [51]. Of which, Tanner et al. [71] in a case-con-
trol study nested in the Agricultural Health Study (AHS) 
found that PD was positively associated with exposure 
to two groups of pesticides defined experimentally 
by impairing mitochondrial function (rotenone) and 
increasing oxidative stress (paraquat). On the other 
hand, short environmental half-life and limited bioavail-
ability of rotenone, and its detoxification in the gut by 
enzymatic, bacterial and hydrolytic reactions make its 
relationship to PD questionable [23,42].

Conclusions 

Rotenone is still used as a non-specific broad-spec-
trum insecticide and as a piscicide worldwide. Data 
from experimental and epidemiological studies show 
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a clear association between rotenone exposure and 
a higher risk of PD. However the causal relationship 
between rotenone and PD is still questionable. Rote-
none in in vitro and in vivo models is an invaluable 
tool for investigating most molecular and cellular 
pathology that occur in PD patients and therefore can 
efficiently test new treatment strategies that would 
be beneficial for patients with PD. 
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